UGT1A10 is responsible for SN-38 glucuronidation and its expression in human lung cancers.

نویسندگان

  • Tetsuya Oguri
  • Toshiaki Takahashi
  • Mitsuru Miyazaki
  • Takeshi Isobe
  • Nobuoki Kohno
  • Peter I Mackenzie
  • Yasuhiro Fujiwara
چکیده

BACKGROUND We previously reported that upregulation of glucuronidation activity catalyzed by uridine 5'diphosphoglucuronosyltransferase (UGT) is one of the mechanisms associated with irinotecan hydrochloride/7-ethyl-10-hydroaxycamptothecin (CPT-11/SN-38) resistance. In order to extend this result to the clinical setting, it is important to elucidate the role of SN-38 glucuronidation by UGT1A isoforms in CPT-11/SN-38 resistance in vivo. MATERIALS AND METHODS We examined SN-38 glucuronidation activity in COS-7 cells transfected with full-length cDNAs for human UGT isoforms (UGT1A1, UGT1A3, UGT1A6 and UGT1A10). The gene expression levels of UGT isoforms were examined in lung cancer cell lines and 14 lung cancer samples by semi, quantitative RT-PCR. RESULTS Our HPLC assay results showed that both UGT1A1 and UGT1A10 are responsible for SN-38 glucuronidation. The levels of UGT1A1 and UGT1A10 expression in a CPT-11/SN-38-resistant cell line were increased compared to levels in the parent cell line. Furthermore, there was considerable intersubject variability in 14 lung cancer samples, but UGT1A1 and UGT1A10 expression levels were significantly correlated (r=0. 70, p=0.004). Our results suggest that not only UGT 1A1, but also UGT 1A10, plays an important role in detoxifying CPT-11/SN-38, leading to resistance to CPT-11/SN-38 in lung cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38).

7-Ethyl-10-hydroxycamptothecin (SN-38) is the pharmacologically active metabolite of irinotecan, in addition to being responsible for severe toxicity. Glucuronidation is the main metabolic pathway of SN-38 and has been shown to protect against irinotecan-induced gastrointestinal toxicity. The purpose of this study was to determine whether common polymorphic UDP-glucuronosyltransferase (UGT) aff...

متن کامل

Short Communication Close Association of UGT1A9 IVS1 399C>T with UGT1A1*28, *6, or *60 Haplotype and Its Apparent Influence on 7-Ethyl-10- hydroxycamptothecin (SN-38) Glucuronidation in Japanese

The anticancer prodrug, irinotecan, is converted to its active form 7-ethyl-10-hydroxycamptothecin (SN-38) by carboxylesterases, and SN-38 is inactivated by UDP-glucuronosyltransferase (UGT)1A1-mediated glucuronidation. UGT1A9 also mediates this reaction. In a recent study, it was reported that the UGT1A9 IVS1 399 (I399)C>T polymorphism is associated with increased SN-38 glucuronidation both in...

متن کامل

Importance of UDP-glucuronosyltransferase 1A10 (UGT1A10) in the detoxification of polycyclic aromatic hydrocarbons: decreased glucuronidative activity of the UGT1A10139Lys isoform.

UDP-glucuronosyltransferase 1A10 (UGT1A10) is an extrahepatic enzyme expressed in aerodigestive tract tissues that exhibits significant glucuronidation activity against the important procarcinogenic benzo(a)pyrene (BaP) metabolite, BaP-trans-7,8-dihydrodiol (BPD), and the UGT1A10 codon 139 (Glu>Lys) polymorphism was previously implicated in risk for orolaryngeal cancer by Elahi et al. in their ...

متن کامل

Short Communication Close Association of UGT1A9 IVS1 399C>T with UGT1A1*28, *6, or *60 Haplotype and Its Apparent Influence on 7-Ethyl-10- hydroxycamptothecin (SN-38) Glucuronidation in Japanese

The anticancer prodrug, irinotecan, is converted to its active form 7-ethyl-10-hydroxycamptothecin (SN-38) by carboxylesterases, and SN-38 is inactivated by UDP-glucuronosyltransferase (UGT)1A1-mediated glucuronidation. UGT1A9 also mediates this reaction. In a recent study, it was reported that the UGT1A9 IVS1 399 (I399)C>T polymorphism is associated with increased SN-38 glucuronidation both in...

متن کامل

Glucuronidation of OTS167 in Humans Is Catalyzed by UDP-Glucuronosyltransferases UGT1A1, UGT1A3, UGT1A8, and UGT1A10.

OTS167 is a potent maternal embryonic leucine zipper kinase inhibitor undergoing clinical testing as antineoplastic agent. We aimed to identify the UDP-glucuronosyltransferases (UGTs) involved in OTS167 metabolism, study the relationship between UGT genetic polymorphisms and hepatic OTS167 glucuronidation, and investigate the inhibitory potential of OTS167 on UGTs. Formation of a single OTS167-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Anticancer research

دوره 24 5A  شماره 

صفحات  -

تاریخ انتشار 2004